cell body reorganization in the spinal cord after sympathectomy

The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Monday, November 26, 2012

Hemodynamic changes in vertebral and carotid arteries were observed after sympathicotomy for hyperhidrosis



T3 sympathicotomy segment was the most frequent transection done (95.83%), as only ablation (25%) or in association with T4 (62.50%) or with T2 (8.33%). It was observed increase in RI and PI of the common carotid artery (p < 0.05). The DPV of internal carotid artery decreased in both sides (p < 0.05). The SPV and the DPV of the right and left vertebral arteries also increased (p < 0.05). Asymmetric findings were observed so that, arteries of the right side were the most frequently affected.

CONCLUSIONS: Hemodynamic changes in vertebral and carotid arteries were observed after sympathicotomy for PH. SPV was the most often altered parameter, mostly in the right side arteries, meaning significant asymmetric changes in carotid and vertebral vessels. Therefore, the research findings deserve further investigations to observe if they have clinical inferences.
http://www.ncbi.nlm.nih.gov/pubmed/16186983