cell body reorganization in the spinal cord after sympathectomy

The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Tuesday, June 12, 2012

Effects of lumbar sympathectomy: abolition of ejaculation, causalgia in 41, general morbidity of 0.6% and mortality rate of 0.6 %, arrhythmias, cardiac decompensation

Goldstein, reviewing the complications of 791 patients undergoing open lumbar sympathectomy reports 10% of specific complications, such as abolition of ejaculation in 22 patients and causalgia in 41, general morbidity of 0.6% (TEP and bleeding) and mortality rate of 0.6 % (arrhythmias, cardiac decompensation or bleeding) 15.

SIMPACTECTOMIA RETROPERITONEOSCÓPICA FOR TREATMENT OF LUMBAR plantar hyperhidrosis RETROPERITONEOSCOPIC lumbar sympathectomy FOR THE TREATMENT OF PLANT HYPERIDROSIS
Marcelo de Paula Loureiro, TCBC-PR ¹, ² Neomar Roman, Sheila Cristina Weigmann ³;
Aline ³ Fontana, Paulo Cesar Bufara Boscardim4
(Rev Bras ECR. Cir. 2007, 34 (4): 222-224).
(translated by google)

dynamic cerebral autoregulation is altered by ganglion blockade

We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P <0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure.
Conclusions-: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.
Circulation. 106(14):1814-1820, October 1, 2002.
http://www.problemsinanes.com/pt/re/dyslipidaemia/abstract.00003017-200210010-00017.htm;jsessionid=PX6phQHYFG5PD1p2DMS1cJLvG1TbtLLLH0bfJT6vKJgLLx1zn0Xf!1816077220!181195629!8091!-1?nav=reference

Tuesday, June 5, 2012

effect of bilateral cervical sympathetic ganglionectomy on the architecture of pial arteries

The influence of the cranial sympathetic nerves on the architecture of pial arteries in normo- and hypertension was examined. For this purpose the effect of bilateral superior cervical ganglionectomy was evaluated in normotensive rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). The operations were performed at the age of 1 wk, which is just prior to the onset of ganglionic transmission. The length of the inner media contour was measured and the media cross-sectional area was determined planimetrically, with computerized digitalization of projected photographic images of transversely sectioned pial arteries. Four wk after sympathectomy there was a 20% reduction in media cross-sectional area and a consequent reduction in the ratio between media area and calculated luminal radius in the major pial arteries at the base of the brain in WKY but not in SHRSP. Conversely, in small pial arteries linear regression analysis showed that in WKY subjected to ganglionectomy the relationship between media cross-sectional area and luminal radius was significantly larger in arteries with a radius less than 21 microns compared to untreated WKY. No such effect was seen in the corresponding SHRSP vessels. In addition, the cross-sectional area of the internal elastic membrane (IEM) in the basilar arteries of WKY was measured by means of a computerized image-analysing system. Mean cross-sectional area of the IEM was approximately 45% larger following SE than in control animals. The present findings propose a 'trophic' role for the sympathetic perivascular nerves in large pial arteries of the rat. The increased media-radius ratio in the small pial arteries of the WKY following sympathectomy might reflect a compensatory hypertrophy due to reduced protection from the larger arteries against the pressure load. The inability to detect any morphometrically measurable effect of the sympathectomy in the cerebral arteries of SHRSP is probably explained by a marked growth-stimulating effect of the high pressure load in these animals.
http://www.ncbi.nlm.nih.gov/pubmed/7701941